第379题 | 知识点:渐近线条数
题目
曲线:$y = e^{\frac{1}{x}}\sqrt{1+x^2}$ 的渐进线条数
解答
铅锤渐近线:$x=0$
没有水平,找斜渐近线可以考虑泰勒展开:
$$
\begin{aligned}
e^{\frac{1}{x}}\sqrt{1+x^2} &= |x|e^{\frac{1}{x}}\sqrt{1+\frac{1}{x^2}}
\\
&= |x|(1+\frac{1}{x} + o(\frac{1}{x}))(1+\frac{1}{2x^2} + o(\frac{1}{x^2}))
\\
&= |x|(1+\frac{1}{x} + o(\frac{1}{x}))
\\
&= |x|+\frac{|x|}{x}+o(\frac{|x|}{x})
\end{aligned}
$$
故有些渐进线:$y = x + 1$ 和 $y = -x - 1$
共三条
All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Comment