第374题 | 知识点:函数连续性
题目
设 $f(x) = \begin{cases}
\dfrac{x-\sin x}{x^3} &,x\ne0\\
a&,x=0
\end{cases}$ 处处连续,则 $f’’(0) = $
解答
求一点处的高阶导数,可以用泰勒展开或洛必达
本题不妨把 $f(x)$ 在 $x=0$ 处泰勒展开:
$$
f(x) = \dfrac{1}{6} - \dfrac{1}{120}x^2 + o(x^2)
$$
故 $a = f(0) = \dfrac{1}{6}, f’(0) = 0, f’’(0) = -\dfrac{1}{60}$
All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Comment