题目

设函数 $\varphi(x) = \displaystyle\int_0^{\sin x}f(tx^2)dt$,其中 $f(x)$ 是连续函数,且 $f(0) = 2$

(1)求 $\varphi’(x)$

(2)讨论 $\varphi’(x)$ 的连续性

解答

当 $x = 0$ 时:$\varphi(0) = 0$

当 $x \ne 0$ 时:先对被积函数换元:令 $tx^2 = u$,有 $\varphi(x) = \dfrac{1}{x^2}\displaystyle\int_0^{x^2\sin x} f(u)du$

于是有:$\varphi(x) = \begin{cases}
\dfrac{1}{x^2}\displaystyle\int_0^{x^2\sin x} f(u)du &,x\ne0
\\
0 &,x=0
\end{cases}$

然后直接求导即可:$\varphi’(x) = \dfrac{(2\sin x + x\cos x) f(x^2\sin x) x^2 - 2\displaystyle\int_0^{x^2\sin x}f(u)du}{x^3}$

$x=0$ 点用导数定义:

$$
\begin{aligned}
\varphi’(0) = \lim_{x\to0}\dfrac{\displaystyle\int_0^{x^2\sin x} f(u)du}{x^3} =
\lim_{x\to0}\dfrac{\displaystyle\int_0^{x^3} f(u)du}{x^3} =
\lim_{\xi\to0}f(\xi) = 2
\end{aligned}
$$

综上:$\varphi’(x) = \begin{cases}
\dfrac{(2\sin x + x\cos x) f(x^2\sin x) x^2 - 2\displaystyle\int_0^{x^2\sin x}f(u)du}{x^3} &,x\ne0
\\
2&,x=0
\end{cases}$

讨论 $x=0$ 处的连续性

$$
\begin{aligned}
\lim_{x\to0}\varphi(x) &=
\lim_{x\to0}\dfrac{(2\sin x + x\cos x) f(x^2\sin x) x^2 - 2\displaystyle\int_0^{x^2\sin x}f(u)du}{x^3}
\\
&=
\lim_{x\to0}\dfrac{(2\sin x + x\cos x) f(x^2\sin x) x^2}{x^3} -
2\lim_{x\to0}\dfrac{\displaystyle\int_0^{x^2\sin x}f(u)du}{x^3}
\\
&=
3f(0) - 2f(0)
\\
&= 2
\end{aligned}
$$

由 $\lim\limits_{x\to0}\varphi’(x) = \varphi(0)$,故 $\varphi’(x)$ 在 $x = 0$ 处连续

因此 $\varphi’(x)$ 在 $\mathbf{R}$ 上连续