第371题 | 知识点:导数训练(二)
题目
设 $f(x)$ 在 $x_0$ 点可导,$\alpha_n,\beta_n$ 为趋于零的正向数列,求极限
$$
\lim_{n\to\infty}\dfrac{f(x_0+\alpha_n) - f(x_0-\beta_n)}{\alpha_n + \beta_n}
$$
解答
考虑写出在 $f(x)$ 在 $x_0$ 点的可微定义式:
$f(x_0 + \alpha_n) - f(x_0) = f’(x_0)\alpha_n + o(\alpha_n)$
$f(x_0 - \beta_n) - f(x_0) = -f’(x_0)\beta_n + o(\beta_n)$
$$
\begin{aligned}
&
\lim_{n\to\infty}\dfrac{f(x_0+\alpha_n) - f(x_0-\beta_n)}{\alpha_n + \beta_n}
\\
=&
\lim\limits_{n\to\infty}\dfrac{f(x_0)+f’(x_0)\alpha_n + o(\alpha_n) -
f(x_0)+f’(x_0)\beta_n + o(\beta_n)}{\alpha_n + \beta_n}
\\
=&
f’(x_0) +
\lim\limits_{n\to\infty}\dfrac{o(\alpha_n)+ o(\beta_n)}{\alpha_n + \beta_n}
\\
=&
f’(x_0)
\end{aligned}
$$
All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Comment