题目

设 $f(x)$ 为连续函数,$\lim\limits_{x\to0}\dfrac{xf(x) - \ln(1 + x)}{x^2} = 2$.

$F(x) = \displaystyle\int_0^x tf(x-t)dt$,当 $x\to0$ 时,$F(x) - \dfrac{1}{2}x^2$ 与 $bx^k$ 为等价无穷小

其中常数 $b \ne 0$,$k$ 为某正整数,求 $k, b, f(0), f’(0)$

解答

先用等式脱帽法,把 $f(x)$ 表达式写出来:

$$
\dfrac{xf(x)-\ln(1+x)}{x^2} = 2 + o(1) \quad\Rightarrow\quad f(x) = 2x + \dfrac{\ln(1 + x)}{x} + o(x)
$$

又 $\ln(1 + x) = x - \dfrac{1}{2}x^2 + o(x^2)$,故 $f(x) = 1 + \dfrac{3}{2}x + o(x)$

又 $F(x) = \displaystyle x\int_0^xf(u) du - \int_0^x uf(u)du$

$\displaystyle \int_0^x f(u)du = x + \dfrac{3}{4}x^2 + o(x^2)$,$\displaystyle \int_0^x uf(u)du = \dfrac{1}{2}x^2 + \dfrac{1}{2}x^3 + o(x^3)$

$F(x) = \dfrac{1}{2}x^2 + \dfrac{1}{4}x^3 + o(x^3)$,由于 $F(x) - \dfrac{1}{2}x^2$ 与 $bx^k$ 为等价无穷小

因此 $bx^k \sim \dfrac{1}{4}x^3$,易得:$b = \dfrac{1}{4}, k = 3$

$f(0) = 1$

$f’(0) = \lim\limits_{x\to0}\dfrac{1 + \dfrac{3}{2}x + o(x) - 1}{x} = \dfrac{3}{2}$