题目

$$
\lim_{n\to\infty}[\dfrac{n}{n^2 + n + \ln 1} + \dfrac{n}{n^2 + n + \ln 2} + \cdots + \dfrac{n}{n^2 + n + \ln n}]^n
$$

解答

幂指函数化成指对数,单独处理指数部分:

$$
A = \lim_{n\to\infty} n\ln [\dfrac{n}{n^2 + n + \ln 1} + \dfrac{n}{n^2 + n + \ln 2} + \cdots + \dfrac{n}{n^2 + n + \ln n}]
$$

无穷项合式极限,考虑放缩:

$$
\begin{aligned}
\sum_{k=1}^n \dfrac{n}{n^2 + n + \ln n} \le &
\sum_{k=1}^n \dfrac{n}{n^2 + n + \ln k} \le
\sum_{k=1}^n \dfrac{n}{n^2 + n}
\\
\dfrac{n^2}{n^2 + n + \ln n} \le &
\sum_{k=1}^n \dfrac{n}{n^2 + n + \ln k} \le
\dfrac{n^2}{n^2 + n}
\\
\end{aligned}
$$

求出左侧极限:

$$
\lim_{n\to\infty} n\ln \dfrac{n^2}{n^2 + n + \ln n} =
\lim_{n\to\infty} \dfrac{- n^2 - n\ln n}{n^2 + n + \ln n} = -1
$$

求出右侧极限:

$$
\lim_{n\to\infty} n\ln \dfrac{n^2}{n^2 + n} =
\lim_{n\to\infty} \dfrac{- n^2}{n^2 + n} = -1
$$

由夹逼准则可得:

$$
\lim_{n\to\infty} \sum_{k=1}^n \dfrac{n}{n^2 + n + \ln k} = -1
$$

故原极限:

$$
\lim_{n\to\infty}[\dfrac{n}{n^2 + n + \ln 1} + \dfrac{n}{n^2 + n + \ln 2} + \cdots + \dfrac{n}{n^2 + n + \ln n}]^n = e^{-1}
$$