第359题 | 知识点:极限冲刺训练(四)
题目
$$
\lim_{x\to0}\dfrac{\displaystyle\int_0^{2x}|t - x|\sin t dt}{|x|^3}
$$
解答
遇到绝对值,先考虑去绝对值,这里直接分类讨论即可
$$
\begin{aligned}
\lim_{x\to0^+}\dfrac{\displaystyle\int_0^{2x}|t - x|\sin t dt}{|x|^3} &=
\lim_{x\to0^+}\dfrac{\displaystyle\int_0^{2x}|t - x|t dt}{|x|^3}
\\
&=
\lim_{x\to0^+}\dfrac{\displaystyle\int_0^{x}(xt - t^2) dt + \int_x^{2x}(t^2 - xt) dt}{x^3}
\end{aligned}
$$
写到这一步,就不用考虑用洛必达去积分符号了,可以考虑直接把积分解出来
$$
\lim_{x\to0^+}\dfrac
{(\dfrac{1}{2}xt^2 - \dfrac{1}{3}t^3)\bigg|_0^x + (\dfrac{1}{3}t^3 - \dfrac{1}{2}xt)\bigg|_x^{2x}}{x^3} = 1
$$
然后不难发现,分母从头到尾都没动过,故其实是不用分类讨论的,可以直接得出:
$$
\lim_{x\to0}\dfrac{\displaystyle\int_0^{2x}|t - x|\sin t dt}{|x|^3} = 1
$$
All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Comment