第336题 | 知识点:常微分方程习题训练(三)
题目
设函数 $f(x)$ 二阶可导,且 $f’(x) = f(1-x),f(0) = 1$,求 $f(x)$
解答
换元:$f’(1-x) = f(x) \quad \Rightarrow \quad f’(1) = f(0) = 1$
再求导:$f’’(x) = -f’(1 - x)$
联立两式:$f’’(x) + f(x) = 0$ 为 二阶常系数齐次微分方程
特征根:$\lambda^2 + 1 = 0 \quad\Rightarrow\quad \lambda = 0 \pm i$
齐次通解:$y = C_1\cos x + C_2 \sin x \quad \Rightarrow \quad y’ = C_2\cos x - C_1\sin x$
代入初值:$y(0) = C_1 = 1$, $y’(1) = C_2\cos 1 - \sin 1 = 1 \quad \Rightarrow \quad C_2 = \dfrac{1 + \sin 1}{\cos 1}$
综上所述:$f(x) = \cos x + \dfrac{1 + \sin 1}{\cos 1} \cdot \sin x$
All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Comment