题目

设可导函数 $y=y(x)$ 由方程 $\sin x - \displaystyle\int_x^y\varphi(u)du=0$ 所确定的

其中可导函数 $\varphi(u)>0$,且 $\varphi(0) = \varphi’(0)=1$,求 $y’’(0)$

解答

隐函数求导问题,显然 $x = 0$ 时,$y = 0$,然后对方程两侧求导有:

$$
\cos x - y’ \varphi(y) + \varphi(x) = 0 \quad\Rightarrow\quad y’ =
\dfrac{\cos x + \varphi(x)}{\varphi(y)}
$$

有:$y’(0) = \dfrac{1 + 1}{1} = 2$

再求一次导:

$$
-\sin x - y’’\varphi(y) - y’^2\varphi’(y) + \varphi’(x) = 0 \quad\Rightarrow\quad
y’’ = \dfrac{-\sin x - y’^2\varphi’(y) + \varphi’(x)}{\varphi(y)}
$$

有:$y’’(0) = -4 + 1 = -3$