题目

函数 $f(x) = \begin{cases}
\dfrac{e^x-1}{x} &x\ne0\
1&x=0
\end{cases}$,在 $x=0$ 处

(A)连续且取极大值
(B)连续且取极小值
(C)可导且导数为$0$
(D)可导且导数不为$0$

解答

$\lim\limits_{x\to0} f(x) = \lim\limits_{x\to0} \dfrac{e^x-1}{x} = \lim\limits_{x\to0} \dfrac{x}{x} = 1 = f(0)$

故 $f(x)$ 在 $x=0$ 处连续

$f’(0) = \lim\limits_{x\to0}\dfrac{\dfrac{e^x-1}{x} - 1}{x} =
\lim\limits_{x\to0} \dfrac{e^x - 1 - x}{x^2} = \dfrac{1}{2}$

故 $f(x)$ 在 $x = 0$ 处导数为 $\dfrac{1}{2}$