题目

设 $f(x) = \lim\limits_{n\to\infty}\dfrac{x^{n+2}-x^{-n}}{x^n+x^{-n}}$,则函数$f(x)$

(A)仅有$1$个间断点
(B)仅有$2$个间断点,其中$1$个可去,$1$个无穷
(C)仅有$2$个间断点,$2$个都是跳跃
(D)有$2$跳跃间断点和$1$个可去间断点

解答

常用极限结论:$\lim\limits_{n\to\infty} x^n = \begin{cases}
0 & ,|x| < 1 \\
\infty & ,|x| > 1 \\
1 & ,x = 1 \\
\not\exists &,x=-1
\end{cases}$

$f(x) = \lim\limits_{n\to\infty}\dfrac{x^{n+2}-x^{-n}}{x^n+x^{-n}} =
\lim\limits_{n\to\infty}\dfrac{x^2 \cdot x^{2n}-1}{x^{2n}+1} \quad (x \ne 0)$

$|x| < 1$ 时:$f(x) = \lim\limits_{n\to\infty}\dfrac{x^2 \cdot x^{2n}-1}{x^{2n}+1} = -1$

$x = 1$ 时:$f(x) = \lim\limits_{n\to\infty}\dfrac{x^2 \cdot x^{2n}-1}{x^{2n}+1} = 0$

$x = -1$ 时:$f(x) = \lim\limits_{n\to\infty}\dfrac{x^2 \cdot x^{2n}-1}{x^{2n}+1} = 0$

$|x| > 1$ 时:$f(x) = \lim\limits_{n\to\infty}\dfrac{x^2 - 0}{1 + 0} = x^2$

$\lim\limits_{x\to1^+} f(x) = 1$,$\lim\limits_{x\to -1^-} f(x) = 1$

故 $x = 0, x = -1$ 为 跳跃间断点

$\lim\limits_{x\to0}f(x) = 0$,故 $0$ 是 可去间断点

因此,两个跳跃,一个可去