题目

设 $f(x) = \lim\limits_{n\to\infty}\dfrac{x^{n+2}}{\sqrt{2^{2n}+x^{2n}}}$,则 $f(x)$ 在其定义域内 $(~~)$

A.连续
B.有$1$个可去间断点
C.有$1$个跳跃间断点
D.有$1$个第二类间断点

解答

常用极限结论:$\lim\limits_{n\to\infty} x^n = \begin{cases}
0 & ,|x| < 1 \\
\infty & ,|x| > 1 \\
1 & ,x = 1 \\
\not\exists &,x=-1
\end{cases}$

分母是两个指数函数相加,谁作为分母无穷大上的最大数量级,考虑分类讨论

$|x| < 2$ 时,$f(x) = \lim\limits_{n\to\infty}\dfrac{(\dfrac{x}{2})^{n} \cdot x^2}{\sqrt{1+(\dfrac{x}{2})^{2n}}} = 0$

$x = 2$ 时,$f(x) = \lim\limits_{n\to\infty}\dfrac{2^{n+2}}{\sqrt{2^{2n+1}}} = 2^{\frac{3}{2}}$

$x = -2$ 时,$f(x) = \lim\limits_{n\to\infty}(-1)^{n+2} \cdot 2^{\frac{3}{2}} = \text{不存在}$

$|x| > 2$ 时,$f(x) = \lim\limits_{n\to\infty}\dfrac{x^{2}}{\sqrt{(\dfrac{2}{x})^{2n}+1}} = x^2$

故 $x = 2$ 为跳跃间断点