第251题 | 知识点:等价无穷小(十)
题目
设函数 $f(x)=\dfrac{\sin x}{1+x^2}$ 在 $x=0$ 处的 $3$ 次泰勒多项式为 $ax+bx^2+cx^3$,求参数 $a,b,c$
解答
简单推导:
$$
\begin{aligned}
\sin x &= x - \dfrac{1}{6}x^3 + o(x^3)
\\
\dfrac{1}{1 + x^2} &= 1 - x^2 + x^4 + o(x^4)
\\
\dfrac{\sin x}{1+x^2} &= [x - \dfrac{1}{6}x^3 + o(x^3)] \cdot [1 - x^2 + x^4 + o(x^4)] = x - \dfrac{7}{6}x^3 + o(x^3)
\end{aligned}
$$
故 $a = 1, b = 0, c = -\dfrac{7}{6}$
All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Comment