题目

设 $f(x)$ 连续,且$\lim\limits_{x\to0^+}\dfrac{f(x)}{x}=1,\alpha(x)=\displaystyle\int_0^{\sqrt{x}}\dfrac{\ln(1+t^4)}{f(t)}dt$

$\beta(x)=\displaystyle\int_0^{\sin x}\frac{\sqrt{1+t^3}-1}{f(t)}dt$,则当 $x\to0^+$时,$\alpha(x)$ 是 $\beta(x)$ 的几阶无穷小

解答

由 $f(x)$ 连续,且$\lim\limits_{x\to0^+}\dfrac{f(x)}{x}=1$,可知:

$\lim\limits_{x\to0} f(x) = f(0) = 0, f’(0) = 1, f(x) \sim x$

$$
\alpha \sim \int_0^{\sqrt{x}} t^3 dt = \dfrac{1}{4}x^2
$$

$$
\beta \sim \int_0^x \dfrac{t^2}{2} dt = \dfrac{1}{6} x^3
$$

故 $\alpha$ 是 $\beta$ 的 低阶无穷小