题目

当 $x\to0^+$时,下列无穷小量中最高阶的是( )

A. $\displaystyle\int_0^{1-\cos x}\frac{\sin t}{t}dt\quad\quad\quad\quad\quad$ B. $\displaystyle\int_0^{x}t\tan\sqrt{x^2-t^2}dt$

C. $\displaystyle\int_{\sin x}^{1-\sqrt{\cos x}}e^{xt}\ln(1+t^3)dt\quad$ D. $\displaystyle\int_{\sin x}^{x}\sqrt{\sin^3t}dt$

解答

A选项

$\displaystyle\int_0^{1-\cos x}\frac{\sin t}{t}dt \sim
\displaystyle\int_0^{\frac{1}{2}x^2}dt = \dfrac{1}{2}x^2$

B选项

令 $\sqrt{x^2 - t^2} = u$,则

$\displaystyle\int_0^{x}t\tan\sqrt{x^2-t^2}dt =
-\displaystyle\int_0^{x}u\tan udu \sim -\int_0^x u^2 du = -\dfrac{1}{3}x^3$

C选项

用第一积分中值定理,提出 $e^{xt}$ 项

$\displaystyle\int_{\sin x}^{1-\sqrt{\cos x}}e^{xt}\ln(1+t^3)dt =
e^{x\xi}\displaystyle\int_{\sin x}^{1-\sqrt{\cos x}}\ln(1+t^3)dt \sim
e^{x\xi}\displaystyle\int_{\sin x}^{1-\sqrt{\cos x}}t^3dt$

$e^{x\xi}\displaystyle\int_{\sin x}^{1-\sqrt{\cos x}}t^3dt \sim \dfrac{1}{4} e^{x^2} [(1-\sqrt{\cos x})^4 - \sin^4 x] \sim \dfrac{1}{4}x^4$

D选项

$\displaystyle\int_{\sin x}^{x}\sqrt{\sin^3t}dt = \int_{\sin x}^{x}t^{\frac{3}{2}}dt = \xi^{\frac{3}{2}} (x - \sin x)$

由于 $\sin x < \xi < x \quad \Rightarrow \quad
\dfrac{\sin x}{x} < \dfrac{\xi}{x} < \dfrac{x}{x}$

不等号两侧取极限,可知 $\lim\limits_{x\to 0} \dfrac{\xi}{x} = 1 \Rightarrow \xi \sim x$

$\xi^{\frac{3}{2}} (x - \sin x) \sim x^{\frac{3}{2}} \cdot \dfrac{1}{6}x^3 = \frac{1}{6}x^{\frac{9}{2}}$

综上所述,选 D