题目

若 $\lim\limits_{x\to0}\bigg(\dfrac{\ln(x+\sqrt{x^2+1})+ax^2+bx^3}{x}\bigg)^{\dfrac{1}{x^2}}=e^2$,求$a,b$的值

解答

$$
\begin{aligned}
&
\lim\limits_{x\to0}\bigg(\dfrac{\ln(x+\sqrt{x^2+1})+ax^2+bx^3}{x}\bigg)^{\dfrac{1}{x^2}}
\\
=&
\lim\limits_{x\to0}e^{\dfrac{\ln(x + \sqrt{x^2 + 1}) + ax^2 + bx^3 - x}{x^3}}
\\
\end{aligned}
$$

已知:

$$
(1 + x^2)^{-\frac{1}{2}} \sim 1 - \dfrac{1}{2}x^2 + o(x^2)
$$

两侧取积分:

$$
\ln(x + \sqrt{x^2 + 1}) \sim x - \dfrac{1}{6}x^3 + o(x^3)
$$

故可对原式进行 泰勒展开

$$
\lim\limits_{x\to0}e^{\dfrac{x - \frac{1}{6}x^3 + ax^2 + bx^3 - x}{x^3}}
$$

极限存在,故 $a = 0, b = \dfrac{13}{6}$