第240题 | 知识点:强化极限训练(三十)
题目
若 $\lim\limits_{x\to0}\bigg(\dfrac{\ln(x+\sqrt{x^2+1})+ax^2+bx^3}{x}\bigg)^{\dfrac{1}{x^2}}=e^2$,求$a,b$的值
解答
$$
\begin{aligned}
&
\lim\limits_{x\to0}\bigg(\dfrac{\ln(x+\sqrt{x^2+1})+ax^2+bx^3}{x}\bigg)^{\dfrac{1}{x^2}}
\\
=&
\lim\limits_{x\to0}e^{\dfrac{\ln(x + \sqrt{x^2 + 1}) + ax^2 + bx^3 - x}{x^3}}
\\
\end{aligned}
$$
已知:
$$
(1 + x^2)^{-\frac{1}{2}} \sim 1 - \dfrac{1}{2}x^2 + o(x^2)
$$
两侧取积分:
$$
\ln(x + \sqrt{x^2 + 1}) \sim x - \dfrac{1}{6}x^3 + o(x^3)
$$
故可对原式进行 泰勒展开:
$$
\lim\limits_{x\to0}e^{\dfrac{x - \frac{1}{6}x^3 + ax^2 + bx^3 - x}{x^3}}
$$
极限存在,故 $a = 0, b = \dfrac{13}{6}$
All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Comment