第239题 | 知识点:强化极限训练(二十九)
题目
若 $\lim\limits_{x\to0}\dfrac{ax^2+bx+1-e^{x^2-2x}}{x^2}=2$,求$a,b$的值
解答
由 泰勒展开:
$$
e^{x^2 - 2x} - 1 = x^2 - 2x + \dfrac{1}{2}(x^2 - 2x)^2 + o(x)^2 = 3x^2 - 2x + o(x^2)
$$
故可对原式进行 泰勒展开:
$$
\lim\limits_{x\to0}\dfrac{ax^2+bx+1-e^{x^2-2x}}{x^2} =
\lim\limits_{x\to0}\dfrac{(a - 3)x^2+(b + 2)x}{x^2}
$$
极限存在,故 $b = -2, a = 5$
All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Comment