题目

$$
\lim_{x\to0}\frac{\cos 2x - \cos x\sqrt{\cos 2x}}{x^k} = a \ne 0,\text{求k,a}
$$

解答

分子 恒等变形:

$$
\begin{aligned}
\cos 2x - \cos x\sqrt{\cos 2x} &= \sqrt{\cos 2x} \cdot (\sqrt{\cos 2x} - \cos x)
\\
&= \sqrt{\cos 2x} \cdot \dfrac{\cos 2x - \cos^2 x}{\sqrt{\cos 2x} + \cos x}
\\
&= \dfrac{\sqrt{\cos 2x}}{\sqrt{\cos 2x} + \cos x} \cdot (2\cos^2 x - 1 - \cos^2 x)
\\
&= \dfrac{\sqrt{\cos 2x}}{\sqrt{\cos 2x} + \cos x} \cdot (\cos^2 x - 1)
\\
&= \dfrac{\sqrt{\cos 2x}}{\sqrt{\cos 2x} + \cos x} \cdot (- \sin^2 x)
\\
\end{aligned}
$$

故原式为

$$
\begin{aligned}
\lim_{x\to0}\frac{\cos 2x - \cos x\sqrt{\cos 2x}}{x^k} &=
\lim_{x\to0} \dfrac{\sqrt{\cos 2x}}{\sqrt{\cos 2x} + \cos x} \cdot \frac{(- \sin^2 x)}{x^k}
\\
&=
-\dfrac{1}{2} \lim_{x\to0} \frac{\sin^2 x}{x^k}
\\
&=
-\dfrac{1}{2} \lim_{x\to0} \frac{x^2}{x^k}
\\
\end{aligned}
$$

由于 极限存在,故 $k = 2, a = -\dfrac{1}{2}$