题目

$$
\lim_{x\to+\infty} \bigg[{
(x^3 - x^2 + \dfrac{x}{2} + 1) e^{\frac{1}{x}} -
\sqrt{x^6 + x^2 + x + 1}
}\bigg]
$$

解答

不是很喜欢这种 硬展 的题目

$$
\begin{aligned}
&\lim_{x\to+\infty} \bigg[{
(x^3 - x^2 + \dfrac{x}{2} + 1) e^{\frac{1}{x}} - x^3 + x^3 -
\sqrt{x^6 + x^2 + x + 1}
}\bigg]
\\
=&
\lim_{x\to+\infty} x^3 [(1-\dfrac{1}{x} + \dfrac{1}{2x^2} + \dfrac{1}{x^3})e^{\frac{1}{x}} - \sqrt{1 + \dfrac{1}{x^4} + \dfrac{1}{x^5} + \dfrac{1}{x^6}}]
\\
=&
\lim_{x\to+\infty} x^3 \cdot e^{\frac{1}{x}} [(1-\dfrac{1}{x} + \dfrac{1}{2x^2} + \dfrac{1}{x^3}) - e^{-\frac{1}{x}}\sqrt{1 + \dfrac{1}{x^4} + \dfrac{1}{x^5} + \dfrac{1}{x^6}}]
\\
=&
\lim_{x\to+\infty} x^3 \cdot [(1-\dfrac{1}{x} + \dfrac{1}{2x^2} + \dfrac{1}{x^3}) -
(1 - \dfrac{1}{x} + \dfrac{1}{2x^2} - \dfrac{1}{6x^3}) (1 + o(\dfrac{1}{x^3}))]
\\
=&
\lim_{x\to+\infty} x^3 \cdot [\dfrac{7}{6} \cdot \dfrac{1}{x^3} + o(\dfrac{1}{x^3})]
\\
=& \dfrac{7}{6}
\end{aligned}
$$