第221题 | 知识点:强化极限训练(十一)
题目
$$
\lim_{x\to0^+}\frac{\sqrt{a}\arctan\sqrt{\dfrac{x}{a}}-\sqrt{b}\arctan\sqrt{\dfrac{x}{b}}}{x\sqrt{x}}
$$
解答
$$
\arctan x = x - \dfrac{1}{3}x^3 \quad \Rightarrow \quad
\arctan \sqrt{\dfrac{x}{a}} = \sqrt{\dfrac{x}{a}} - \dfrac{x^{\frac{3}{2}}}{3a^{\frac{3}{2}}} + o(x^{\frac{3}{2}})
$$
根据上述推导,可对等式中的分子进行如下变形:
$$
\sqrt{a}\arctan\sqrt{\dfrac{x}{a}}-\sqrt{b}\arctan\sqrt{\dfrac{x}{b}} =
x^{\frac{1}{2}} - \dfrac{x^{\frac{3}{2}}}{3a} - x^{\frac{1}{2}} + \dfrac{x^{\frac{3}{2}}}{3b} + o(x^{\frac{3}{2}}) = \dfrac{a - b}{3ab} x^{\frac{3}{2}} + o(x^{\frac{3}{2}})
$$
刚好展开到分母对应的阶数,于是就做完了
$$
\lim_{x\to0^+}\frac{\sqrt{a}\arctan\sqrt{\dfrac{x}{a}}-\sqrt{b}\arctan\sqrt{\dfrac{x}{b}}}{x\sqrt{x}} = \dfrac{a - b}{3ab}
$$
All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Comment