第218题 | 知识点:强化极限训练(八)
题目
$$
\text{求极限 }
\lim_{x\to0}\frac{1 + \dfrac{x^2}{2} - \sqrt{1+x^2}}{(\cos x - e ^{x^2})\sin x^2}
$$
解答
$x \to 0$ 时,有如下推导:
$$
\cos x = 1 - \frac{1}{2}x^2 + o(x^2), \quad
e^{x^2} = 1 + x^2 + o(x^2) \quad \Rightarrow \quad
\cos x - e^{x^2} \sim -\frac{3}{2}x^2
$$
$$
(1 + x^2)^{\frac{1}{2}} - 1 \sim \frac{1}{2}x^2 - \frac{1}{8}x^4
$$
利用上述推导解决问题:
$$
\begin{aligned}
\lim_{x\to0}\frac{1 + \dfrac{x^2}{2} - \sqrt{1+x^2}}{(\cos x - e ^{x^2})\sin x^2}
&=
\lim_{x\to0}\frac{\dfrac{1}{8}x^4}{-\dfrac{3}{2}x^4}
&=
-\frac{1}{12}
\end{aligned}
$$
All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Comment