题目

$$
\text{求极限 }\lim_{x\to 1}\frac{x - x^x}{1 - x + \ln x}
$$

解答

先处理分子:

$$
\lim_{x\to 1}\frac{x - x^x}{1 - x + \ln x} =
\lim_{x\to 1}x \cdot \frac{1 - x^{x - 1}}{1 - x + \ln x} =
-\lim_{x\to 1}\frac{e^{(x-1)\ln x} - 1}{1 - x + \ln x} =
-\lim_{x\to 1}\frac{(x-1)\ln x}{1 - x + \ln x}
$$

不妨换元,令 $t = x - 1$,则 $x = 1 + t$

$$
\text{原式}= -\lim_{t\to0}
\frac
{t\ln(1 + t)}
{ln(1 + t) - t} =
-\lim_{t\to0}
\frac
{t^2}
{\bigg(t - \dfrac{1}{2}t^2 + o(t^2)\bigg) - t} = 2
$$