第213题 | 知识点:强化极限训练(三)
题目
$$
\text{求极限 }
\lim_{x\to0}\frac{\sqrt[4]{1-\sqrt[3]{1-\sqrt{1-x}}} - 1}
{(1+x)^\frac{1}{\sqrt[3]{x^2}} - 1}
$$
解答
$$
\sqrt[4]{1-\sqrt[3]{1-\sqrt{1-x}}} - 1
\sim
\sqrt[4]{1-\sqrt[3]{\frac{1}{2}x}} - 1
\sim
-\frac{1}{2^{\frac{7}{3}}}x^{\frac{1}{3}}
$$
$$
(1+x)^\frac{1}{\sqrt[3]{x^2}} - 1 \sim x^{\frac{1}{3}}
$$
$$
\text{原式} = \lim_{x\to0}\frac{-\dfrac{1}{2^{\frac{7}{3}}}x^{\frac{1}{3}}}{x^{\frac{1}{3}}} =
-\frac{1}{2^{\frac{7}{3}}}
$$
All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Comment